A Practical Guide To The Use Of Luting Cements

A Peer-Reviewed Publication
Written by John O. Burgess, DDS, MS and Taneet Ghuman, BDS

Earn 4 CE credits
This course was written for dentists, dental hygienists, and assistants.

This course has been made possible through an unrestricted educational grant. The cost of this CE course is $59.00 for 4 CE credits.

Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing.

PennWell is an ADA CERP Recognized Provider

Go Green, Go Online to take your course
Educational Objectives

Overall goal: The purpose of this article is to provide dental professionals with information on the selection and application of luting cements.

Upon completion of this course, the clinician will be able to do the following:
1. List the types of luting cements and their chemical composition.
2. List the physical properties that affect the performance of luting cements.
3. List the applications for the various luting cements currently available.
4. Describe the physical properties, chemistry and application of self-adhesive luting cements.

Abstract:

Dentistry uses a wide range of cements to retain crowns, posts and fixed partial dentures to tooth structure. Dental practitioners should have a good understanding of the properties and categories of dental cements to ensure the long-term clinical performance of cemented restorations. Classes of dental cements have evolved from zinc phosphate to glass ionomers, resin modified glass ionomers, resin cements and lastly to self-adhesive resin cements. Self-adhesive resin cements require no bonding agents and simplify the cementation procedure. Since metal, porcelain-fused-to-metal, resin and all-ceramic restorations are used today, an understanding of cement performance is needed before selecting a material to use in a particular situation. This article gives a brief review of cement performance and introduces a new material to the class of self-adhesive resin cements.

Introduction:

History and Evolution of Dental Cements

Dental cements have evolved from humble beginnings. In the 1850s, the only cement available was zinc oxide eugenol. This was followed by the successive development of zinc phosphate cements in the early 1900s, zinc polycarboxylate later in the 1900s, glass ionomer cements in 1972 and resin modified glass ionomers in 1992 (Figure 1).

Figure 1. Development of dental cements

<table>
<thead>
<tr>
<th>1850s</th>
<th>1900s</th>
<th>1972</th>
<th>1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc oxide eugenol</td>
<td>Zinc phosphate</td>
<td>Glass ionomers</td>
<td>Resin-modified glass ionomers</td>
</tr>
</tbody>
</table>

Description and Properties

Zinc Oxide Eugenol Cement

Zinc oxide eugenol cement is mixed using zinc oxide-based powder and eugenol liquid. Originally introduced as a weak setting powder and liquid, two changes made this cement a clinical success. The first change increased the strength of the mixed material, allowing it to be used for permanent cementation, and the second produced an easy-to-mix paste-paste system for provisional cementation that is still in use today. While the cement had an obtunding effect on pulp, its disadvantages, including a high film thickness, have limited its use. The physical properties of dental cements appear in Table 1.

Zinc Phosphate Cement

Zinc phosphate cement has enjoyed widespread success as a permanent luting agent. It is a two-bottle system composed of phosphoric acid liquid, and a mixture of zinc oxide and magnesium oxide powder. The pH of the newly mixed zinc phosphate is less than 2.0 but rises to 5.9 within 24 hours and is neutral (pH 7.0) by 48 hours. The working time can be prolonged by mixing the material on chilled glass slabs. Even though its use has declined dramatically, it has a significant amount of clinical success associated with its use. Zinc phosphate serves as the standard by which newer cement systems are compared.

Zinc Polycarboxylate Cement

Zinc polycarboxylate cement was the first cement to bond to tooth structure. It consists of a powder containing zinc oxide and magnesium oxide, and a liquid composed of polyacrylic acid. Also known as zinc polyacrylate cement, its adhesive properties produce a bond to enamel and a weaker bond to dentin by a chelation reaction between the carboxyl groups of the cement and calcium in the tooth. Although still used, primarily by pediatric dentists and especially Durelon (3M ESPE, St. Paul, Minn.), its use has declined in recent years. Zinc polycarboxylate cement produces a mild pulpal reaction and forms a weak adhesive bond to the tooth. It has a short working time and greater solubility than other cements.

Glass Ionomer Cements

Glass ionomer cements were introduced as hybrids of silicate cements and polycarboxylate cements to produce a cement with characteristics of silicate cements (translucency and fluoride release) and polycarboxylate cements (chemically bond to tooth structure with a good seal). They consist of fluorooaluminosilicate glass and a liquid containing polyacrylic acid, itaconic acid and water. The development of glass-ionomer cements was first announced by Wilson and Kent. Glass ionomer cements are waterbased, have low solubility in the oral cavity, good working time, intermediate mechanical properties and excellent translucency.
are among the most resistant to salivary contamination, but their handling and mixing characteristics make them difficult to use initially. The bond to tooth structure is significantly reduced when the tooth is excessively dried, which also contributes to post-cementation thermal sensitivity. Although still used today, since they produce retention rates similar to zinc phosphate, their use has declined.

**Resin Modified Glass Ionomer Cements**

Resin modified glass ionomers were formed by replacing part of the polyacrylic acid in conventional glass ionomer cements with hydrophilic methacrylate monomers. These dual- or tri-cured materials are popular luting agents and provide slightly greater bond strengths and release greater amounts of fluoride compared to conventional glass ionomer cements. However, a cement film of only 20–30μ is exposed at the marginal area after the restoration is cemented, and research has not shown reduced caries levels around restorations cemented with fluoride-releasing cements. The mechanical properties of all glass ionomers increase with time, which possibly contributes to their clinical success. These cements bond to tooth structure∗, have low microleakage when mixed properly and when applied to moist dentin produce little post-cementation thermal sensitivity.

**Resin Cements**

Resin cements vary in composition (paste-paste, single paste or powder liquid), curing mechanism (light cured, dual cured and chemically cured) and bonding mechanisms (total etch, self-etching). They are methacrylate-based and, depending on the curing mechanism, contain chemical and/or light initiators. Resin cements initially gained popularity due to their mechanical properties, the adhesion produced by the acid-etch technique to enamel and dentin, and their low solubility.

The bonding agent used with a resin cement should be compatible with the cement chemistry to ensure an optimal bond. Sanares et al. first reported that the pH of a bonding agent could inhibit the polymerization of a chemically cured composite core material. Currently the best results

---

**Table 1: Physical Properties of Luting Cements**

<table>
<thead>
<tr>
<th>Property</th>
<th>Ideal</th>
<th>ZnOE</th>
<th>ZnP0₄</th>
<th>PCC</th>
<th>GI</th>
<th>RMGI</th>
<th>Resin</th>
<th>SAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film thickness (mm)</td>
<td>25</td>
<td>≤ 25</td>
<td>≤ 25</td>
<td>&lt; 25</td>
<td>&lt; 25</td>
<td>&gt; 25</td>
<td>&gt; 25</td>
<td>&gt; 25</td>
</tr>
<tr>
<td>Working time (min)</td>
<td>Long</td>
<td>2–3</td>
<td>1.5–5</td>
<td>1.75–2.5</td>
<td>2.3–5</td>
<td>2–4</td>
<td>3–10</td>
<td>0.5–5</td>
</tr>
<tr>
<td>Setting time (min)</td>
<td>Short</td>
<td>4–10</td>
<td>5–14</td>
<td>6–9</td>
<td>6–9</td>
<td>2</td>
<td>3–7</td>
<td>1–15</td>
</tr>
<tr>
<td>Setting reaction</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Acid-based</td>
<td>Light and/or chemical plus/acid-based</td>
<td>Light and/or chemical</td>
<td>Light and chemical</td>
</tr>
<tr>
<td>Retention</td>
<td>High</td>
<td>Low–moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate–high</td>
<td>High</td>
<td>Moderate–high</td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>N/A</td>
<td>—</td>
<td>3.1–4.5</td>
<td>3.6–6.3</td>
<td>4.2–5.3</td>
<td>13–24</td>
<td>34–37</td>
<td>37–41</td>
</tr>
<tr>
<td>Elastic modulus (GPa)</td>
<td>Dentin= 13.7 Enamel= 84-130</td>
<td>5.4</td>
<td>13.2</td>
<td>4–4.7</td>
<td>11.2</td>
<td>—</td>
<td>17</td>
<td>4.5–9.8</td>
</tr>
<tr>
<td>Bond strength to dentin (MPa)</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
<td>3–5</td>
<td>14–20* 10–12**</td>
<td>18–30*</td>
<td>5–12</td>
<td></td>
</tr>
<tr>
<td>Solubility in water (wt %)</td>
<td>Max. 0.2</td>
<td>0.04</td>
<td>0.06–0.2</td>
<td>&lt; 0.05</td>
<td>1.25</td>
<td>0.07–0.4</td>
<td>0.13</td>
<td>&lt; 1.0</td>
</tr>
<tr>
<td>Excess cement removal</td>
<td>Easy</td>
<td>Medium</td>
<td>Easy</td>
<td>Medium</td>
<td>Medium</td>
<td>Easy</td>
<td>Hard</td>
<td>Medium</td>
</tr>
</tbody>
</table>

*With bonding agent **Without bonding agent
are obtained with a dual-cured cement and a light-cured or dual-cured bonding agent, such as Prime and Bond NT (DENTSPLY/Caulk, Milford, Del.) which is supplied with a self-cured activator that makes it compatible with dual-cured resin cements and restoratives. Dual-cured cements should be tested to ensure that the chemical curing mechanism is still functioning. A simple test is to mix the dual-cured resin cement, place it in the dark for eight minutes and then break it between the fingers. If the material fractures with a snap, the chemical cure is intact; if it bends before fracturing, the chemical cure has weakened; if it is soft, the chemical curing mechanism has expired.

Although resin cements provide more retention than conventional cements, their use is associated with difficult cleanup and multiple steps for bonding. All-ceramic crowns require increased tooth preparation and have been associated with tooth sensitivity after cementation. Clinical surveys have reported that postoperative sensitivity within the first year after crown cementation with resin cements occurred in about 37 percent of patients. Postoperative tooth sensitivity has been associated with cements and crown cementation since the use of zinc phosphate cement. In the case of resin bonding cements, it appears that the reason for the sensitivity is failure to seal the dentinal tubules opened by phosphoric acid etching. It seems more likely that a combination of poor technique and lack of proper isolation has led to this increase in sensitivity rather than irritation associated with dental cements.

When using resin cements, properly bonded and sealed indirect restorations are retentive, long-lasting durable restorations. Bonded resin cements are particularly useful in clinical situations where retention of crowns or fixed partial dentures is compromised.

Applications

Zinc Oxide Eugenol, Zinc Phosphate Cements
The high film thickness of zinc oxide eugenol cements makes them unsuitable for the cementation of many contemporary indirect restorations. Use of zinc phosphate and polycarboxylate cements has also declined as cement options and types of indirect restorations, especially ceramic restorations requiring bonding, have increased.

Glass Ionomer Cements
Glass ionomer cements are used mainly to cement metal and metal-ceramic restorations with adequate retentive and resistance form. They are contraindicated for low-strength all-ceramic restorations.

Resin Modified Glass Ionomer Cements
Resin modified glass ionomer cements have a successful history of use for metal, metal ceramic and high-strength ceramic restorations (those with alumina and zirconia cores) as well as for metal and composite fiber posts. Although some reports have indicated that resin modified glass ionomer cements may cause ceramic cracking, this is not the case. These cements are acceptable to use with high-strength ceramic restorations. Leevaijo et al. measured the fracture incidence of In-Ceram and VitaDur Alpha porcelain jacket crowns cemented with five luting agents (Fuji I, Fuji Plus, Vitremer, Advance and Panavia 21) on prepared premolar teeth. During a two-month storage in saline, no cracks occurred with In-Ceram regardless of the cement used, demonstrating that resin modified glass ionomers can be used with high-strength ceramic materials. Resin modified glass ionomers provide inadequate retention with preparations with poor retention and resistance form. Table 2 lists indications for dental cements.

Table 2: Indications For Luting Cements

<table>
<thead>
<tr>
<th>Restoration</th>
<th>ZnOE</th>
<th>ZnP4</th>
<th>PIC</th>
<th>GIC</th>
<th>RMGIC</th>
<th>Resin Bonding</th>
<th>SAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast crown, metal-ceramic crown, FPD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Crown or FPD with poor retention</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Metal ceramic crown with porcelain margin</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Pressed, high-leucite or feldspathic ceramic crown</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Split cast alumina, alumina or zirconia core crown</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ceramic inlay</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ceramic veneer</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Resin-reinforced FPD (Maryland Bridge)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Cast post and core</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Composite fiber post</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Resin Cements

Resin cements are the most versatile and widely used cements for nonmetallic restorations, resin-bonded fixed partial dentures, ceramic crowns and porcelain veneers, as well as ceramic and resin composite inlays and onlays.

Esthetic resin composite cements are used for veneers and are supplied in multiple shades, viscosities and esthetic try-in pastes. With thin ceramic veneers (0.4–0.8 mm), the shade of the veneer may be altered using these cements. A water-soluble try-in paste of the selected shade is used to verify the desired adjustment of the veneer’s shade by placing the try-in paste into the veneer and temporarily seating it on the tooth. The correct shade is verified, and the same shade resin cement is used to cement the veneer.

Bonding of high-strength ceramic crowns will increase crown retention to teeth with short clinical crowns such as those that have been reduced more occlusally to provide space for ceramic posterior restorations.26 Resin cements with a dentin bonding agent have provided a threefold increase in crown retention on teeth with short clinical crowns compared to using zinc phosphate cement. In the same study, retention was also improved using a resin cement for overtapered crown preparations compared to zinc phosphate cement.27 Patients should be advised not to clench or grind their teeth immediately after restorations have been cemented with chemically activated resin cements, because early bond strengths are low and need 24 hours to fully mature.28 Excess cement should be removed before resin cements set to avoid damaging the weaker early bond.29

When using a total etch cement, the enamel margins must be etched carefully before applying the etchant to dentin to prevent overetching. The primer or primer adhesive combination must be applied with agitation to moist dentin and then thoroughly dried. After drying, the tooth surface should appear shiny. If not, another layer of primer is applied and dried followed by a layer of unfilled resin. Since the adhesive layer must be light cured to achieve high bond strengths, a bonding agent producing a low film thickness ……..(Prime and Bond NT, DENTSPLY/Caulk, Milford, Del. or Single Bond, 3M ESPE) is recommended. Thorough light curing of this layer is critical before applying the mixed cement over it. Using self-etch cements (Panavia, Kuraray) reduces the number of steps compared to total-etch cements; however, using self-etching cements when bonding to unground enamel requires that the enamel be etched as a separate step.

Surface Treatment of Ceramics

Prior to Resin Cement Use

One area sometimes overlooked yet critical to the outcome of cementing indirect restorations is the surface treatment of the restoration itself. The surface treatment of ceramics depends upon the composition and strength of the ceramic material. Options include etching, sandblasting or the use of the Rocatec/Cojet technique (3M ESPE).

Etching

Etching is effective only for silica-containing materials (feldspathic porcelain and lithium disilicate- and leucite-containing ceramics). Care should be taken to use the appropriate etching time and etch correctly, as it is possible to overetch and reduce the bond of the cement to the ceramic. The etching time (20 seconds to two minutes) is specific for each ceramic. For lithium disilicate (Empress materials), a 20-second etch time with 5 percent HF is recommended by the manufacturer (Ivoclar) and is supported by research.30 Etching the intaglio (inner) surface increases the surface area available for bonding (Figure 2). An excellent review of preparing porcelain surfaces for bonding has recently been authored by Alex.31

Sandblasting or treatment with the Rocatec system (3M ESPE) can be used on the intaglio surface prior to bonding high-strength ceramic materials such as Procera All Ceram (Nobel Biocare, Yorba Linda, Calif.), Cercon (DENTSPLY) or LAVA (3M ESPE). Sandblasting increases the surface area of the intaglio surface of the restoration. For high-strength core materials, a light dusting of alumina particles of less than 50μ for short periods (five seconds) is recommended. Sandblasting is not recommended for low-strength ceramics as it can weaken the restoration.

The Rocatec Soft or Cojet Sand system is an effective method for increasing the bond to high-alumina cores,32 feldspathic porcelain33 and zirconia core materials.34 It coats the cementing surface of the ceramic restoration with silica (Figure 3) using a 30- or 110-micron silica particle coated with alumina.35 Silane is then applied to this layer and dried thoroughly. The silane bonds to the silica coated on the ceramic, which bonds to the resin cement. By this mechanism a high-strength non-silica-containing ceramic restoration is bonded to the tooth.

Figure 2. Intaglio surface etched with hydrofluoric acid

Figure 3: Cojet Sand applied for 15 seconds on a non-silica-containing ceramic (Cercon)
Resin cements are also popular for metal and resin fiber post cementation. In one study, the use of resin cements with dentin bonding agents improved post retention when the length of the prepared post space was less than ideal.36,37 A recent report by Hess et al.38 on an in vitro short-term study found that fiber posts cemented with self-adhesive cements in endodontically treated teeth provide good retention.

Self-Adhesive Cements — A New Category
Self-adhesive cements are the newest category of resin cements. They are dual-cured and can be used most effectively when bonding to dentin. They are esthetically suitable for cementing all-ceramic crowns and porcelain inlays and onlays. Unlike resin cements, these materials require no intermediate steps to bond to enamel and dentin. A separate adhesive bonding agent is not required, saving time and simplifying the procedure.

Self-adhesive cements contain acrylic or diacrylate monomers and specific adhesive monomers that are sufficiently acidic to produce their self-adhesive properties. Self-adhesive cements leave the dentin smear layer and produce an intermediate bond to dentin compared with total etch cements. The cement acidity needed to etch the tooth lasts only briefly, and near neutrality is achieved over a short time period. Reports of reduced cold sensitivity after cementation using these materials have been recorded, while other studies have shown no difference between self-adhesive and total etch cements.39,40,41

Self-adhesive cements have been evaluated clinically and have a successful clinical history. Powers42 reported that Unicem (3M ESPE), the first self-adhesive cement to appear on the market, has been evaluated over a four-year period in more than 4,400 restorations, with 1,560 available for recall. Less than 1.8 percent of the restored teeth had occasional temperature sensitivity, while marginal staining (graying at the margins) was seen in 4.2 percent of the cases.

Self-adhesive cements are dual cured, and it has been reported that dual-cured cements have reduced bond strengths in the self-cured mode. For this reason, it is prudent to light cure all dual-curing cements at accessible restorative margins. This practice should improve marginal integrity, and may increase wear resistance and reduce staining. Bond strengths to tooth structure seem to vary with the specific material. Some of these cements appear to be sensitive to overwetting and overdrying, which lowers their bond strengths. With most if not all cements in this category, the bond to enamel is improved when an etchant and bonding agent are applied. In contrast to the effects observed on enamel, it has been our experience with at least one of these cements that when dentin is etched with phosphoric acid or a bonding agent is applied, the bond decreases.

Crown retention values have been reported by Palacios et al.43 and Cakir et al.44 In both studies, standardized preparations were made on extracted human molars. Zirconium oxide copings (Procera All-Zirkon or Cercon) were fabricated and sandblasted with Al2O3. Copings were cemented using a self-adhesive cement, a resin modified glass ionomer cement (Rely X Luting) or a self-adhesive composite resin (Rely X Unicem). In the Cakir study, seven self-adhesive cements were compared, with no thermocycling. In the Palacios et al. report, the specimens were thermocycled for 5,000 cycles, with a 15-second dwell time. The copings in both studies were removed using a tensile load until failure. In both studies, the highest retention rates were reported for the self-etching resin cement and the self-adhesive cement. The predominant mode of failure was cement remaining principally on the zirconium oxide copings, demonstrating that the bond to the tooth was weaker than the ceramic bond.

Recent Developments
A new self-adhesive cement has recently been developed (SmartCem™2, DENTSPLY/Caulk). This cement contains resins that provide structural reinforcement of the cement and that also offer strong cross-link bonding following polymerization. It is based on Prime and Bond chemistry, containing the phosphoric acid modified monomer PENTA, which has been shown to bond chemically as well as mechanically by interacting chemically with the calcium contained in the tooth structure.45 A unique initiator system with a patent pending promotes physical properties, enhances both shelf and shade stability and provides a gel phase during the setting reaction which results in easy clean-up procedures.

Figure 4a. Mechanical Micro-retention

Figure 4b. Chemical Bonding (PENTA)
In vitro studies have shown the material to have high bond strengths to enamel and dentin; high retentive strength in crown-pull studies; and high bond strengths to indirect restorative materials including composite, base metal, noble metal and all-ceramic materials (Ceron and Finesse). Other studies have found no microleakage at either the enamel or dentin interface; minimal water solubility and sorption; and expansion over a six-month period in water storage of less than 1.0 percent.

Clinical Use of Self-Adhesive Cements — Case Studies
The following case demonstrates the use of self-adhesive cement (SmartCem™2) for the luting of zirconia crowns. The patient, a 32 year-old male in good overall health, presented complaining of the poor esthetic appearance of the porcelain-fused-to-metal crowns on teeth #7 and #8, and gingival recession (Figure 5a). After evaluation, radiographs and discussion with the patient it was decided to replace the crowns with ceramic crowns reinforced with a zirconium core. After preparation and and fabrication of the zirconia cores, a try-in was performed to check their fit on the prepped teeth. The final crowns were seated using the self-adhesive cement (Figure 5b) and excess cement was removed while it was still in the gel phase prior to final set (Figure 5c). The completed case provided excellent marginal integrity and superior esthetics (Figure 5d).

Figure 5a. Poor esthetics and gingival recession at teeth #7 and #8
Figure 5b. Seated crowns with excess cement
Figure 5c. Excess cement removed while in the gel phase
Figure 5d. Completed case

Summary
Over time, luting cements have evolved into stronger dental materials that are easier to use and can bond to tooth structure as well as the restorative material. Concurrently, indirect restorative materials have also evolved, offering a wider variety of materials and far more aesthetic solutions. With so many cements on the market and with new classes of materials emerging, it is critical to select a luting cement that meets the requirements of both the intraoral environment and the type of restoration. Perhaps the most versatile cements are the resin and self-adhesive resin cements since they are indicated for the widest variety of uses. Both provide bonding to tooth structure, and while self-adhesive cements offer extraordinary convenience, they should not be considered a substitute for traditional bonding cements in all situations. Just as self-etch adhesives have not replaced total-etch adhesives, neither should it be expected that self-adhesive cements will replace traditional bonding cements.

Table 3 presents the advantages and disadvantages of all classes of cements discussed in this article.

References
4 White SN, Yu Z. Film thickness of new adhesive luting
Table 3: Advantages & Disadvantages of Dental Cements

<table>
<thead>
<tr>
<th>Dental cement</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnOe</td>
<td>Biocompatible, inexpensive</td>
<td>Low strength, solubility, hand mix</td>
<td>Use with retentive preparations</td>
</tr>
<tr>
<td>ZnPO₄</td>
<td>Successful clinical history</td>
<td>Leakage, hand mix, low retention</td>
<td>Exothermic reaction; need long parallel walls for retention</td>
</tr>
<tr>
<td>PCC</td>
<td>Biocompatible, weak bond to tooth</td>
<td>Low strength, solubility</td>
<td>P/L ratio</td>
</tr>
<tr>
<td>GIC</td>
<td>Translucency, bonds to tooth</td>
<td>Leakage, solubility</td>
<td>Avoid early moisture contamination and excessive drying; bond to moist tooth or bond drops</td>
</tr>
<tr>
<td>RMGIC</td>
<td>Low solubility, low leakage</td>
<td>Water sorption</td>
<td>May be used with high-strength restorations such as Cercon, LAVA, Procera; not for feldspathic porcelain</td>
</tr>
<tr>
<td>Total-etch composite resin cement</td>
<td>Low solubility, bond to feldspathic porcelain and pressables</td>
<td>Film thickness, number of steps, contamination sensitive</td>
<td>Requires bonding resin, moisture control, multiple steps; overetching of dentin possible</td>
</tr>
<tr>
<td>Self-etch composite resin cement</td>
<td>Fewer steps than total-etch cements; no etch and rinse steps required</td>
<td>Requires primer placement and drying steps</td>
<td>Unground enamel and sclerotic dentin etching with phosphoric acid</td>
</tr>
<tr>
<td>Self-adhesive composite resin</td>
<td>No bonding agent or bonding steps required; reduced postoperative cold sensitivity</td>
<td>Lower bond strengths than total- and self-etch resin cements</td>
<td>Requires enamel etch for optimal bond to enamel</td>
</tr>
</tbody>
</table>

8 Ibid.
27 Ibid.
30 Pisani-Proenca J, Erhardt MG, Valandro LF, et al. Influence of ceramic surface conditioning and resin cements on microtensile bond strength to a glass ceramic. J Prosthod...
Dr. Burgess is a diplomat of the Federal Services Board in General Dentistry and the American Board of General Dentistry. He is a Fellow of the Academy of Dental Materials and the American College of Dentists, and an elected member of The American Academy of Esthetic Dentistry and The American Restorative Academy. He is a member of the Academy of Operative Dentistry, The American and International Associations for Dental Research, the Alabama Dental Association and the ADA. A dedicated researcher he has served as the principal investigator on industrial, foundation, state and national grants.

Dr. Burgess is the author of over 300 journal articles, textbook chapters and abstracts and has presented more than 800 continuing education programs nationally and internationally. Dr. Burgess is an active investigator on clinical trials evaluating posterior composites, adhesives, fluoride releasing materials, impression materials and class 5 restorations. He maintains a part-time practice in general dentistry. He has been happily married to Patricia for more than 30 years.

Taneet Ghuman, BDS

Dr. Ghuman graduated with a Bachelor’s degree in Dental Surgery from M.R. Ambedkar Dental College & Hospital, Bangalore, India in 2006. She is pursuing her Masters in Clinical Dentistry, specializing in Dental Biomaterials at UAB and will graduate in 2009. She is a graduate assistant with Dr. John O. Burgess, her advisor. She is a member of the Indian Dental Association, Dental Council of India, Bangalore Academy of Periodontology, American Association of Dental Research, International Association of Dental Research & Alabama Academy of Science. She is active in in-vitro trials on Dental cements, Bonding agents, Restorative Materials and Impression materials. Upon completion of her Masters, Dr. Ghuman intends to continue her work in the field of Dental Materials.

Acknowledgment

The clinical case in this article contains clinical images courtesy of Dr. Amaury M. Silveira.

Disclaimer

The author(s) of this course has/have no commercial ties with the sponsors or the providers of the unrestricted educational grant for this course.

Reader Feedback

We encourage your comments on this or any PennWell course. For your convenience, an online feedback form is available at www.ineedce.com.
Questions

1. In the 1850s, the only cement available was _________.
   a. zinc oxide ethanol
   b. zinc oxide eugenol
   c. magnesium oxide eugenol
   d. none of the above

2. Resin modified glass ionomer cements were introduced in _________.
   a. 1972
   b. 1982
   c. 1992
   d. 2002

3. Zinc oxide eugenol cement _________.
   a. is the cement of choice today
   b. has an obtunding effect on the pulp
   c. has a high film thickness
   d. b and c

4. Zinc phosphate cement _________.
   a. is a two-bottle system composed of phosphoric acid liquid, and a mixture of zinc oxide and magnesium oxide powder
   b. produces an exothermic reaction
   c. has a significant amount of clinical success associated with its use
   d. all of the above

5. The first cement to bond to tooth structure was _________.
   a. zinc phosphate
   b. zinc polycarboxylate
   c. glass ionomer
   d. none of the above

6. The development of glass-ionomer cements was first announced by _________.
   a. Wilson and Dent
   b. Wilson and Kent
   c. Wilson and McIntosh
   d. none of the above

7. Glass ionomer cements have _________.
   a. low solubility in the oral cavity
   b. excellent translucency
   c. good working time
   d. all of the above

8. Zinc polycarboxylate cement has a short working time and greater solubility than other cements.
   a. True
   b. False

9. Glass ionomer cements produce retention rates similar to zinc phosphate.
   a. True
   b. False

10. Resin modified glass ionomers were formed by replacing part of the polyacrylic acid in conventional glass ionomer cements with hydrophilic methacrylate monomers.
    a. True
    b. False

11. Resin modified glass ionomers are self-cured and release less fluoride compared to conventional glass ionomer cements.
    a. True
    b. False

12. Resin cements all have the same curing mechanism and bonding mechanisms.
    a. True
    b. False

13. Dual-cured cements should be tested to ensure that the chemical curing mechanism is still functioning.
    a. True
    b. False

14. The range for the compressive strength of resin modified glass ionomer cements is _________.
    a. 30-131 MPa
    b. 40-141 MPa
    c. 40-141 Mpa
    d. none of the above

15. The range for the compressive strength of resin cements is _________.
    a. 184-200 MPa
    b. 194-200 MPa
    c. 194-200 Pma
    d. none of the above

16. All-ceramic crowns require increased tooth preparation and have been associated with tooth sensitivity after cementation.
    a. True
    b. False

17. Bonded resin cements are particularly useful in clinical situations where retention of crowns or fixed partial dentures is _________.
    a. superior
    b. compromised
    c. not required
    d. a and b

18. Zinc oxide eugenol cement is suitable for the cementation of feldspathic ceramic crowns.
    a. True
    b. False

19. Glass ionomer cements are used mainly to cement _________.
    a. metal and all-ceramic restorations with adequate retentive and resistance form
    b. metal and metal-ceramic restorations with adequate retentive and resistance form
    c. metal and metal-ceramic restorations with poor retentive and resistance form
    d. none of the above

20. Resin modified glass ionomer cements should not be used for high-strength ceramic restorations.
    a. True
    b. False

21. ________ are used for veneers and are supplied in multiple shades, viscosities and esthetic try-in pastes.
    a. Esthetic resin composite cements
    b. Esthetic glass ionomer cements
    c. Esthetic zinc phosphate cements
    d. none of the above

22. Resin cements with a dentin bonding agent have provided a ________ increase in crown retention on teeth with short clinical crowns compared to using zinc phosphate cement.
    a. twofold
    b. threefold
    c. fourfold
    d. fivefold

23. Sandblasting _________.
    a. can be used on the intaglio surface prior to bonding high-strength ceramic materials
    b. is not recommended for low-strength ceramics
    c. increases the surface area of the intaglio surface
    d. all of the above

24. Etching is effective only for silica-containing materials (feldspathic porcelain and lithium disilicate- and leucite- containing ceramics).
    a. True
    b. False

25. Self-adhesive cements _________.
    a. are the newest category of resin cements
    b. are esthetically suitable for cementing all-ceramic crowns and porcelain inlays and onlays
    c. require no intermediate steps to bond to enamel and dentin
    d. all of the above

26. It is prudent to light-cure all dual-curing cements at accessible restorative margins.
    a. True
    b. False

27. A cement containing phosphoric acid modified monomer PENTA has been shown to _________.
    a. bond mechanically
    b. interact with the organic material at the tooth surface
    c. interact chemically with the calcium contained in the tooth structure
    d. a and c

28. Excess self-adhesive cement can be removed during the gel phase.
    a. True
    b. False

29. Self-adhesive composite resin cement requires enamel etch for optimal bond to enamel.
    a. True
    b. False

30. The selection of a luting cements must consider _________.
    a. the physical properties of the cement
    b. the esthetic properties of the cement for esthetic restorations
    c. the material and type of restoration being cemented
    d. all of the above
A Practical Guide To The Use Of Luting Cements

Requirements for successful completion of the course and to obtain dental continuing education credits: 1) Read the entire course. 2) Complete all information above. 3) Complete answer sheets in either pen or pencil. 4) Mark only one answer for each question. 5) A score of 70% on this test will earn you 4 CE credits. 6) Complete the Course Evaluation below. 7) Make check payable to PennWell Corp.

Evaluations Objectives

1. List the types of luting cements and their chemical composition.
2. List the physical properties that affect the performance of luting cements.
3. List the applications for the various luting cements currently available.
4. Describe the physical properties, chemistry and application of self-adhesive luting cements.

Course Evaluation

Please evaluate this course by responding to the following statements, using a scale of Excellent = 5 to Poor = 0.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective #1:</td>
<td>Yes No</td>
</tr>
<tr>
<td>Objective #2:</td>
<td>Yes No</td>
</tr>
<tr>
<td>Objective #3:</td>
<td>Yes No</td>
</tr>
<tr>
<td>Objective #4:</td>
<td>Yes No</td>
</tr>
</tbody>
</table>

1. Were the individual course objectives met?
2. To what extent were the course objectives accomplished overall?
3. Please rate your personal mastery of the course objectives.
4. How would you rate the objectives and educational methods?
5. How do you rate the author's grasp of the topic?
6. Please rate the instructor's effectiveness.
7. Was the overall administration of the course effective?
8. Do you feel that the references were adequate?
9. Would you participate in a similar program on a different topic?
10. If any of the continuing education questions were unclear or ambiguous, please list them.
11. Was there any subject matter you found confusing? Please describe.
12. What additional continuing dental education topics would you like to see?

Mail completed answer sheet to
Academy of Dental Therapeutics and Stomatology,
A Division of PennWell Corp.
P.O. Box 116, Chesterland, OH 44026
or fax to: (440) 845-3447

For IMMEDIATE results, go to www.ineedce.com
click on the button “Take Tests Online.” Answer sheets can be faxed with credit card payment to (440) 845-3447, (216) 398-7922, or (216) 255-6619.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment of $59.00 is enclosed. (Checks and credit cards are accepted.)</td>
<td></td>
</tr>
</tbody>
</table>

If paying by credit card, please complete the following:

Acct. Number: ____________
Exp. Date: ____________

Charges on your statement will show up as PennWell

1. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

PLEASE PHOTOCOPY ANSWER SHEET FOR ADDITIONAL PARTICIPANTS.

PennWell maintains records of successful completion of any quizzes. Please contact our offices for a copy of your continuing education credits report. This report, which will list all credits earned to date, will be generated and mailed to you within five business days of receipt. PennWell reserves the right to refuse service to anyone who has not completed this course requirements, or whose continuing education credits report indicates non-compliance with regulations. PennWell maintains records of successful completion of any quizzes. Please contact our offices for a copy of your continuing education credits report. This report, which will list all credits earned to date, will be generated and mailed to you within five business days of receipt.

© 2008 by the Academy of Dental Therapeutics and Stomatology, a division of PennWell.

www.ineedce.com

A Division of PennWell Corp.

LUT0806DE